Moore spielen eine gewichtige Rolle im globalen Kohlenstoffdioxid-Haushalt. Im Zuge des Wachstums moorspezifischer Vegetation wird CO2 gebunden und für den Aufbau organischer Moleküle genutzt. Im Unterschied zu vielen anderen Ökosystemen findet der Abbau dieser organischen Verbindungen in Mooren allerdings deutlich langsamer statt als ihr Aufbau. Dadurch konnten sich im Laufe von Jahrtausenden große Mengen an kohlenstoffreichen Verbindungen wie Lignin, Cellulose und Huminstoffe in Mooren ansammeln, wobei im Gegenzug der Atmosphäre langfristig CO2 entzogen wurde.

Die Kombination von Sauerstoffmangel und einer hohen Konzentration an phenolischen, also pflanzlichen Substanzen stellt einen langsamen Abbau des organischen Materials wie Cellulose oder Lignin in Mooren sicher, was diese zu CO2-Senken macht. Ein Abbau und Umbau von Phenolen kann allerdings durch spezialisierte Enzyme wie Tyrosinasen katalysiert werden. Zwingend erforderlich dafür ist die Verfügbarkeit von molekularem Sauerstoff.

„Bedingt durch den hohen Wassergehalt intakter Moorböden kann gasförmiger Sauerstoff allerdings nur in geringem Ausmaß in den Boden eindringen, wodurch Tyrosinase-Enzyme in ihrer Aktivität gehemmt werden. Folglich ist die Stabilität der organischen Kohlenstoffspeicher durch den Sauerstoffmangel in Moorböden gewährleistet“, sagt Annette Rompel, Vorständin des Institutes für Biophysikalische Chemie.

Vielfalt an Tyrosinasen in Böden

Um den Einfluss von Tyrosinase-Enzymen in Mooren auf die Stabilität der Kohlenstoffspeicher zu erforschen, untersuchten die Wissenschafter*innen von der Fakultät für Chemie in einem vom FWF geförderten Projekt in einem ersten Schritt deren phylogenetische Vielfalt. Mittels molekularbiologischer Methoden gelang es, eine Vielzahl an Gensequenzen von potenziellen Tyrosinase-Enzymen zu identifizieren. „Dabei zeigte sich ein breites Spektrum an Tyrosinase-Enzymen, die natürlicherweise in Mooren vorhanden sind“, so Doktorand und Erstautor Felix Panis.

Um erstmals Informationen über die biochemischen Eigenschaften eines Tyrosinase-Enzyms in Mooren zu erhalten, wurde ein Enzym, gewonnen aus einem Salz-Niedermoor am Ostufer des Neusiedler Sees, im Labor hergestellt. Weiterführende Untersuchungen zeigten, dass sich das Tyrosinase-Enzym an den basischen pH-Wert seiner Umgebung (pH 9.0 – 9.5) angepasst hat und eine Vielzahl an phenolischen Substanzen, die in Mooren vorhanden sind, umsetzt.

Phenol-Abbau durch Enzyme

Bedingt durch den Klimawandel ist mit einem vermehrten Auftreten von Hitze- und Trockenperioden in der nahen Zukunft zu rechnen. Die damit verbundene Austrocknung von Moorlandschaften begünstigt das Eindringen von Sauerstoff in den Boden.

„Unsere Forschungsergebnisse zeigen, dass Tyrosinase-Enzyme, die natürlicherweise in Mooren vorhanden sind, unter durch den Klimawandel geänderten Umweltbedingungen das Potenzial haben, phenolische Substanzen verstärkt abzubauen“, erklärt Regina Krachler vom Institut für Anorganische Chemie. In weiterer Folge verschiebt sich das fragile Gleichgewicht zwischen Speicherung und Freisetzung von Kohlenstoff in Mooren, was zum Verlust der Kohlenstoffsenke und zur Emission von großen Mengen CO2 in die Atmosphäre führen kann.

Publikation in „Environmental Science & Technology“:
Panis, F., Krachler, R. F., Krachler, R., Rompel, A. Expression, purification, and characterization of a well-adapted tyrosinase from peatlands identified by partial community analysis. Environ. Sci. Technol., DOI: 10.1021/acs.est.1c02514

Youtube „The Magic of Peatlands – Protectors of our climate“:
https://www.youtube.com/watch?v=KrvHEFzY-94&t=514s