Die Magnonik ist ein relativ neues Forschungsfeld im Bereich des Magnetismus. Eine zentrale Rolle dabei spielen Spinwellen: Eine lokale Störung in der magnetischen Ordnung eines Magneten kann sich wellenförmig über ein Material ausbreiten. Diese Wellen werden als Spinwellen und die zugehörigen Quasi-Teilchen als Magnonen bezeichnet. Sie tragen Informationen in Form von Spindrehimpulsen weiter. Aufgrund dieser Eigenschaft können sie als stromsparende Datenträger in kleineren und energieeffizienten Computern der Zukunft eingesetzt werden. Die Haupt-Herausforderung in der Magnonik ist die Wellenlänge. Je größer sie ist, desto langsamer sind magnonbasierte Datenverarbeitungseinheiten. Bislang konnte die Wellenlänge nur mit sehr komplexen Hybridstrukturen oder einem Synchrotron verkürzt werden. Die Forschungsgruppe „Nanomagnetismus und Magnononik“ der Universität Wien hat gemeinsam mit Kolleg*innen aus Deutschland, Tschechien, der Ukraine und China eine einfachere Alternative entwickelt. Erstautor Qi Wang machte nach monatelanger Arbeit im Labor für Brillouin-Lichtstreuungsspektroskopie an der Fakultät für Physik der Universität Wien die entscheidende Beobachtung: Wenn man die Intensität erhöht, werden die Spinwellen kürzer und schneller – eine bahnbrechende Methode für magnonisches Rechnen.
Der Co-Autor der Studie und Leiter des Wiener NanoMag-Teams, Andrii Chumak, erklärt die Entdeckung mit einer Metapher: „Es ist hilfreich, sich die Methode mit Licht vorzustellen. Wenn man die Wellenlänge des Lichts ändert, ändert sich seine Farbe. Ändert man jedoch die Intensität, ändert sich nur die Leuchtkraft. In diesem Fall haben wir einen Weg gefunden, die Farbe zu ändern, indem wir die Intensität der Spinwellen ändern. Dieses Phänomen ermöglichte es uns, viel kürzere und viel bessere Spinwellen anzuregen“, so Chumak.
Die derzeitige Wellenlänge, die mit diesem System gefunden wurde, liegt bei etwa 200 Nanometern. Laut numerischen Simulationen wäre es möglich, sogar noch kleinere Wellenlängen anzuregen, zum jetzigen Zeitpunkt ist es jedoch sehr schwierig, diese Größenordnungen anzuregen oder zu messen.
Die Amplituden der Spinwellen sind auch für künftige magnetische integrierte Schaltungen von entscheidender Bedeutung. Das entdeckte System weist eine selbsthemmende nichtlineare Verschiebung auf, was bedeutet, dass die Amplitude der angeregten Spinwellen konstant ist. Diese Eigenschaft ist für integrierte Schaltungen sehr relevant, da sie es ermöglicht, dass verschiedene magnetische Elemente mit der gleichen Amplitude zusammenarbeiten. Dies wiederum ist von grundlegender Bedeutung für den Aufbau komplexerer Systeme und für die Verwirklichung des weit entfernten Ziels eines auf Magnonen basierenden Computers. Das Endziel, ein voll funktionsfähiger Magnon-Computer, ist noch nicht erreicht. Trotzdem bringt dieser solide Meilenstein die Forscher*innen ihrem Ziel ein gutes Stück näher.
Publikation in Science Advances:
Deeply nonlinear excitation of self-normalized short spin waves
Qi Wang, Roman Verba, Björn Heinz, Michael Schneider, Ondřej Wojewoda, Kristýna Davídková, Khrystyna Levchenko, Carsten Dubs, Norbert J. Mauser, Michal Urbánek, Philipp Pirro, Andrii V. Chumak
DOI: 10.1126/sciadv.adg4609